Minimalism ATTiny2313 development board
Lacking of proper development board always poses huge resistance for me to jump onto a new MCU. Even with the most prototyping friendly DIP packages, wiring a programming header onto the breadboard is both troublesome and unreliable. Things become worse when the MCU is an AVR. There is absolutely no way to mount a 2×3 0.1in pitch programming header onto the breadboard. It was such a pain until recently I found a elegant way to make a quick and dirty minimalism board. Here is how.

Continue reading

STM32 half-duplex SPI connection

I’ve got my hands onto some STM32F030F4P6 ARM-Cortex M0 processors. Though touted as “32 cents 32-bit micro”, it is not that inexpensive from DigiKey in one-off quantity ($1.45). However it is still cheaper than ATmegas and offers 3 times the performance. The chip comes in 20-pin TSSOP package. Limited pins require much more thoughts when assigning pin function. For example, using 3-pin half-duplex SPI instead of 4-pin full-duplex SPI saves me 1 very precious GPIO pin. Continue reading

HX8352C emWin development board

One lucky day you wake up to find your dream of creating sophisticated graphics user interface for MCU projects comes true, because STMicroelectronics has released a free version of SEGGER emWin for STM32 line of ARM controllers. But your excitement is quickly balanced by the frustration that your favourite LCD panel is not supported. That is a typical day of mine, and my favourite LCD is a 2.6″ 400×240 IPS panel, model TFT1P5971-E by Truly. This post is about how to make the LCD usable with emWin. Continue reading

Eclipse project folder

In an upcoming project I need a micro controller that operates: 1x 16-bit DAC (SPI); 1x 24-bit ADC (SPI); 1x 8-bit parallel LCD; 1x rotary encoder; 1x PWM fan; 1x fan tachometer; 1x temperature sensor (DS18B20); 2x analog switches; 1x uplink UART; 4x push buttons, and some voltage monitoring for various power rails. To my estimation these peripherals require about 40 pins. Considering the additional clock, power and programming/debug lines, the minimal pin count I’m going for is 64. So I went to element 14 parametric search to look for a suitable chip.

Continue reading

Hey I’m writing my first tutorial 🙂

During my recent OLED testing I wrote the software using Arduino Pro Mini 3.3 – the only Arduino board with 3.3V I/O (Lilipad may be the other one but not breadboard friendly). Originally I was using the SPI interface and everything works fine. But when I’m trying to test the I2C interface I suddenly realize the I2C lines are not on the breadboard pins! Instead they are on top of the board and I have to use jumper wires to connect them, not as neat as I would like ;p Continue reading